「Lubuw tcingan khoni」 **泰雅木琴** 的製作與科學

摘 要

並不是每個原住民族都有木琴,「泰雅木琴」是泰雅原住民特有的樂器之一,目前已經很少有族人會製作了。本研究主要利用 Audacity 音樂編輯軟體及分貝計,來分析木琴「音調」和「音量」的變化關係。

我們的研究發現:

- 1.琴座的寬度,並不會影響打擊時音調和音量的變化關係。
- 2.打擊力量越大,音量越大;打擊力量越小,音量越小。
- 3.不同材質的打擊棒,對音調和音量沒有明顯的變化關係。
- 4.琴鍵越長、越細,音調越低;琴鍵越短、越粗,音調越高。
- 5.木頭的材質和密度,會影響音量的大小;密度高,音量小;密度低,音量大。

我們希望藉著這次的研究,不僅將泰雅木琴的製作過程、材質和方法記錄下來, 也希望可以結合學校的課程,將「泰雅木琴」的傳統文化傳承下去。

壹、研究動機

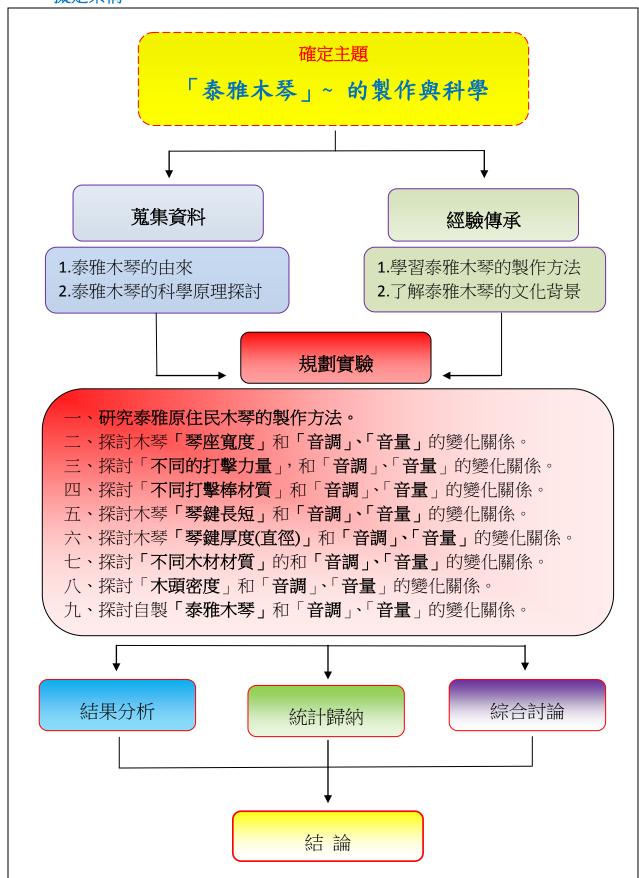
學校最近安排了很多傳統文化課程,又要唱歌、學習樂器、還要到山上活動,真的有點累。但是,讓我們覺得比較好玩的是「**泰雅木琴**」,我們泰雅族原住民的「**木琴**」好像跟一般的「鐵琴、木琴」不太一樣,但是敲擊的方式是一樣的,這樣敲木頭就可以當成樂器直的很好玩!

部落裡的<u>江明清</u>牧師說:「木琴在泰雅族的傳統上,多是在情感上的溝通、傳達訊息與慶典時(如祖靈祭等等)彈奏。早期中央山脈以西的泰雅族曾經使用木琴;從日治時期的文獻,則見於賽德克亞族及其他的太魯閣系統(今太魯閣族)等泰雅人使用;而現在則是推廣於泰雅族的各個部落。」

老師說:「泰雅木琴是泰雅原住民特有的樂器之一,是我們的傳統文化,要學習、要保存、更要知道木琴的科學原理。」除了琴鍵長短會影響聲音的變化之外,還要我們想一想,哪些因素也可能會影響木琴的聲音變化?大家集思廣益,可能不同木頭的材質?不一樣的粗細?用什麼打擊棒?打擊的力量?木頭的形狀?琴座的材質、寬度?好像都會影響吧!

部落裡的<u>江明清</u>牧師,是這方面的專家學者,研究原住民的音樂很久了,校長聘請他來為我們解說一些我們「**泰雅木琴**」的由來、製作方法,也開始帶領我們研究「**泰雅木琴**」的科學原理。

貳、研究目的


- 一、探討「泰雅原住民木琴」的製作過程與方法。
- 二、探討木琴「琴座寬度」和「音調」、「音量」的變化關係。
- 三、探討「不同的打擊力量」,和「音調」、「音量」的變化關係。
- 四、探討「不同打擊棒材質」和「音調」、「音量」的變化關係。
- 五、探討木琴「**琴鍵長短」**和「**音調**」、「**音量**」的變化關係。
- 六、探討木琴「琴鍵粗細(直徑)」和「音調」、「音量」的變化關係。
- 七、探討「不同的木材材質」的和「音調」、「音量」的變化關係。
- 八、探討「木頭密度」和「音調」、「音量」的變化關係。
- 九、探討自製「泰雅木琴」和「音調」、「音量」的變化關係。

参、研究設備與器材

肆、研究方法

一、擬定架構

二、文獻探討

(一)泰雅族木琴之緣起

「Lubuw tcingan khoni'」是「**泰雅木琴**」的泰雅語,「Lubuw」是樂器(也是口簧琴的專有名詞)、「tcingan」是指被敲的物件或聲音【這是 tucing(敲:擊打)的衍生詞)「khoni'」說的是木頭。

泰雅族民,世代居於山間、分隔兩地,於是他們利用山中的「鹽木」製造出木琴, 透過木琴清亮的樂音,在山谷間相互傳遞訊息,進而產生了呼喚族人同享獵物的樂曲、 提醒族人更換工作地點的「換工曲」、以及「青春戀曲」、「歡樂跳舞曲」等。

木琴在泰雅族的傳統上,大多是用在情感上的溝通、傳達訊息與慶典時(如祖靈祭等等)彈奏。據**江明清牧師**研究,早期中央山脈以西的泰雅族曾經使用木琴;從日治時期的文獻,則見於<u>賽德克亞族</u>及其他的太魯閣系統(今<u>太魯閣族</u>)等泰雅人使用;而現在則是推廣於泰雅族的各個部落。

(二)木琴的構造

木琴是泰雅原住民族獨特的樂器,全部僅包含四個音階、兩個底座、兩根捶棒等 共八件附件,材質皆為木頭。泰雅族木琴則沒有音箱的構造;它的琴鍵是由前而後排 列,一共只有四個**圓木造型**的琴鍵,並且四個琴鍵也是直接架在兩根圓木上,平放於 地面上,以**跪姿演奏**。四個圓木琴鍵分別為「Re、Mi、Sol、La」四個音的音階,從 Mi 到 Sol 中間跳過了一個 Fa 音。所以,雖然泰雅族木琴一共只有四個琴鍵,但是從 Re 到 La 之間的音程一共是有五度。

有關泰雅木琴的構造圖片及說明,如圖 4-2-1 所示。

琴鍵

圖 4-2-1 木琴的構造及名稱介紹

(三)木琴的材料和製作

木琴的製作和木頭的材質有相當的關係。<u>江牧師</u>說:『其實每一種木頭都可以敲出聲音,但並不是每一種木頭都適合用來製作成木琴,因為有些木頭的音色不美或者聲音不夠清脆響亮』。<u>江牧師</u>認為,比較適合製作木琴的主要材質有:油桐、構木、山鹽木(羅氏鹽膚木)、檜木、血桐、楓木等,以山鹽木之打擊聲音最清脆,而油桐之聲音最厚實。

通常在製作前,木材須長時間(約3-6個月)陰乾後,待木頭變得乾燥,再依照所需的四個音階,製作成長、短、粗、細不同(音階可以隨木頭調整),聲音輕脆響亮的木琴,木琴的音質好壞與樹木的長短、乾濕及粗細有著極大關係,是娛樂用的樂器,男女皆可敲奏,沒有特別的限制。

「美觀、實用」,也是製作木琴的主要條件,所以木琴的製作盡量會選取粗細比較

相近的,以木琴的長短來控制音調,這樣敲擊起來也比較容易。另一方面,早期原住 民的木琴主要是娛樂性質,所以會「就地取材」,並不會使用比較有經濟價值或堅固耐 用的木材,而會選擇經濟價值較低、容易取得的材質來製作。

(四)泰雅文化的傳承

並不是每個原住民族,都有木琴。泰雅木琴的製作方式很簡單,而且可以就地取材,利用經濟價值較低的木材(油桐、鹽膚木…等),雖然只有四個音階,卻可以敲擊出清脆響亮的樂音,不僅是族人娛樂的樂器,也可以讓孩子們當成「**寓教於樂**」的玩具。

更重要的是文化的傳承,<u>江牧師</u>推廣泰雅文化的音樂、樂器多年,他認為,雖然目前科技資訊發達。但是,文化是一個民族的命脈,一定要繼續傳承下去。

(五)聲音三要素的探討

- 1.音量:聲音的強弱或大小,稱為響度,也就是音量大小。
 - (1)<mark>聲音的大小</mark>稱為「音量」,與物體的<mark>振動強弱</mark>,以及聽者和振動物體的距離有關。振動大,聲音大;振動小,聲音就小。振幅愈大,能量愈大,則音量就愈大。
 - (2)聲音的強弱用「分貝」來表示,分貝數越大,聲音越大聲。音量以分貝〈dB〉 為單位,分貝過高的聲響對身體有害。
 - (3)越用力敲擊打擊樂器,則發出的聲音越大;反之發出的聲音越小。
- 2.音調:聲音的高低,稱為音調。
 - (1)物體每一秒振幅的次數稱為「**頻率**」,頻率高表示音調高,頻率低表示音 調低。聲波的頻率愈大,則音調愈高。
 - (2)聲音的高低,要依樂器主要振動的部位來判斷,與發音體的形狀、體積、 質量都有關係;發音體越輕、越薄、越短、越細、越緊密者就振動得越快, 音調就越高。
- 3.音色〈音品〉:每一種樂音的特色。
 - (1)音色〈音品〉主要由聲波的波形來決定;可以判斷各種樂器的聲音,是因為其波形不同,因而音色〈音品〉不同。
 - (2)音叉的振動只發出單一頻率,且波形單純,故常做為調音的工具。
- 4.舉例說明:木琴的琴鍵越短或杯子內的水越少,敲擊後振動得越快,音調就越高。吉他的弦越粗、弦越鬆、弦越長者,聲音就越低,反之則越高。 每種東西的質地、構造不同,共鳴箱也不同,所以產生的音色就不相同。

三、音階的制定與探討

音樂在人們生活中扮演著不可或缺的角色,許多經典的樂章更是讓人深深著述。 而這些美麗的樂章都是由音符所構成,每個音符都代表著一個音階及其長度。那麼, 音階又是從何而來的呢?

事實上,每個音符都對應了一個頻率。對人耳而言,我們對於音高的感受是呈對數性的關係,舉例來說:【對於 262 Hz 到 524 Hz 的差距,與 524 Hz 到 1048 Hz 之

間的差距,對於人耳的感受而言是相同的 】。也就是說,高八度的 C 的頻率是中央 C 的兩倍。因此,我們可以利用相同的方式,推導出所有音階與頻率之關聯性。

於是,我們可以得到一張「音階與基頻」的對應關係如表 4-3-1 所示:

音 组		大字一组		大字组		小字组		小字一组		小字二组		小字三组		小字四组	
12平均數	唱名	音名	频率	音名	频率	音名	频率	音名	频率	音名	频率	音名	频率	音名	频率
1	1/do	C1	32. 70	С	65. 41	С	130. 81	c1	261.63	c2	523. 25	c3	1046.50	c4	2093. 00
2		C1#/D1b	34. 65	C#/Db	69. 30	c#/db	138. 59	c1#/d1b	277.18	c2#/d2b	554. 37	c3#/d3b	1108.73	c4#/d4b	2217.46
3	2/re	D1	36. 71	D	73.42	d	146.83	d1	293. 66	d2	587. 33	d3	1174.66	d 4	2349. 32
4		D1#/E1b	38. 89	D#/Eb	77. 78	d#/eb	155. 56	d1#/e1b	311.13	d2#/e2b	622. 25	d3#/e3b	1244. 51	d4#/e4b	2489. 02
5	3/mi	E1	41.20	E	82. 41	е	164.81	e1	329. 63	e2	659. 26	e3	1318. 51	e4	2637.02
6	4/fa	F1	43. 65	F	87. 31	f	174.61	f1	349. 23	f2	698. 46	f3	1396. 91	f4	2793. 83
7		F1#/G1b	46. 25	F#/Gb	92. 50	f#/gb	185. 00	f1#/g1b	369. 99	f2#/g2b	739. 99	f3#/g3b	1479. 98	f4#/g4b	2959. 96
8	5/sol	G1	49. 00	G	98. 00	g	196.00	g1	392.00	g2	783. 99	g3	1567. 98	g4	3135. 96
9		G1#/A1b	51. 91	G#/Ab	103.83	g#/ab	207. 65	gl#/alb	415. 30	g2#/a2b	830. 61	g3#/a3b	1661.22	g4#/a4b	3322. 44
10	6/1a	A1	55. 00	A	110.00	a	220. 00	a1	440.00	a2	880.00	a3	1760.00	a4	3520.00
11		A1#/B1b	58. 27	A#/Bb	116. 54	a#/bb	233. 08	al#/blb	466.16	a2#/b2b	932. 33	a3#/b3b	1864.66	a4#/b4b	3729. 31
12	7/si	B1	61.74	В	123. 47	ъ	246. 94	b1	493. 88	b2	987.77	ъ3	1975. 53	ь4	3951.07

表 4-3-1 音名與音階標準頻率對照表

【本表取自:音名的頻率標準 http://www.dwenzhao.cn/profession/basic/freq_music.html】

四、實地訪查

<u>江明清</u>牧師是我們南澳鄉泰雅族的原住民,更於2010年受到文化部文化資產局登錄為「宜蘭縣泰雅族口簧琴(製作及吹奏)」文化資產保存者;<u>江牧師</u>,同時也是木琴製作研究的耆老。我們這次的木琴製作,請<u>江牧師</u>來指導,主要是探討泰雅原住民木琴製作材質、過程和方法。

(一)選取木材

依照江牧師的指導解說,木材的選取,通常有幾個要件:

- 1.要**選取比較直的**,木琴不僅要敲出聲音,也希望美觀好看。
- 2.長度要夠,大約60公分,可以依長度慢慢裁剪成需要的長度。
- 3.**不要有蟲蛀**的木頭,會破壞美觀,也會影響音質。
- 4.盡可能挑選一樣粗細的,敲擊或打擊時會比較容易。
- 5.要**尊重山林**,不要破壞大自然,僅截取需要的木材段落,不要整個破壞或砍伐。 我們前往南澳的山區,請當地耆老指導我們選取可用的木材,如圖 4-4-1 所示。

1.前往南澳山區

2.尋找血桐木

3.取下一根樹枝

4. 選取可用的木材

5.血桐的特色

6.耆老說明血桐木

7.測試木材濕度

8.耆老解說木琴歷史

圖 4-4-1 前往南澳山區選取可用的木材說明圖

(二)加工製作

木頭選取好以後,要先將木頭存放至少三個月,讓木頭乾燥,最好放上半年,因 為這樣木琴製作完成後,才不會走音或變形。

江牧師指導大家製作木琴:

- 1.木琴的音色,會因為不同的材質而改變。
- 2.木琴的音量也是因為木頭的材質或含水量而有變化。
- 3.只能以木頭「**長短、粗細**」來調整木琴的「**音調**」;通常較長的木頭音調低;較 細的木頭音調也會比較低; 反之, 則音調會比較高。
- 4.製作過程和方法,如圖 4-4-2 所示。

圖 4-4-2 泰雅木琴製作過程與方法說明圖

五、規劃實驗

經過江牧師的木琴製作教學,我們和老師一起討論,原住民的木琴可以當成樂 器,主要是呈現「音量」的大小和「音調」的高低變化。至於「音色」,則會因為不同 的木頭材質而產生不同的「音色」。所以,這次研究,**我們主要是探討可能會影響木琴** 「**音量」和「音調」的變因**。經過討論,發現可能有以下幾個:

- (一)木頭的材質、溼度
- (二)琴鍵(木頭)的長短
- (三)琴鍵(木頭)的粗細(直徑)
- (四)琴鍵(木頭)的形狀
- (五)琴座的距離
- (六)打擊的力量
- (七)打擊棒的材質
- (八)打擊琴鍵的位置
- (九)打擊時的環境
- (十)分貝計、錄音機設備的優劣

六、嚴謹的變因控制

我們依據以上的變因,來規畫設計後續的實驗,並嚴謹的控制變因:

(一)固定打擊位置和力道

實驗之前,我們討論應該由誰來敲擊木琴?敲擊的力量呢?不同的力量敲擊木琴,應該會影響實驗的變化吧?為了嚴謹的控制變因,我們製作一個『木琴敲擊器』,來控制敲擊時的力道和位置。如圖 4-6-1 所示:

1.設計木琴敲擊器

2.在桌面上畫線

3.利用強力彈簧

4.打擊棒固定位置

5.設定打擊位置

6.控制打擊棒力道

7.敲擊並錄下聲音

8. 反彈回到原處

說明:

- 1.利用教室上課用的桌子,再以木夾板釘在上面,依設計之寬度、長度畫線。
- 2.以角鐵、彈簧、敲擊棒固定在桌上;經過力道測試與設計,打擊棒只會敲擊一下, 即慢慢回彈至原處。以**分貝計**測量音量大小;以**錄音機**錄下敲擊聲音。

圖 4-6-1 自製木琴敲擊器說明圖

(二)準備不同材質,相同長短、粗細的圓形木頭

- 1.木頭為什麼要設計圓形?
 - 一方面是耆老認為美觀,還有是因為打擊時的位置會比較平均。

- 2.經過實驗設計,我們大約需要『材質、長短、粗細』各不相同的木頭約100根, 考量時間關係(需先置放三個月以上),而且木頭(血桐、鹽膚木或油桐)的取得,無 法滿足我們實驗所需的數量。
- 3.我們請工廠協助製作『**材質、長短、粗細**』不同的木頭,來測試不同琴鍵的『音 調』和『音量』的變化關係,如圖 4-6-2 所示:

1.各種材質木頭

| 2.木頭直徑(中間)

3.測量木頭重量

4.木頭直徑(兩邊)

- 1.因為每根木頭要製作時,需考慮是否蟲蛀、長短組細,所以無法每根木頭都相同。
- 2.準備的木頭共有5種:桐木、松木、杉木、橡膠木、山毛櫸。長度各為30、35、 40、45、50cm; 直徑各約為3、4、5、6cm。

圖 4-6-2 準備各種長短、粗細、材質不同的木頭說明圖

(三)實驗的地點和環境

怕有雜音影響實驗的準確性,我們借用學校有隔音設備的視聽教室來實驗,安 靜時,多次測得的分貝數約37~38dB,算是非常安靜的環境了,如圖4-6-3所示。

所以,為了要控制變因,敲擊的環境在 40dB 以下,才進行敲擊、錄音的實驗。

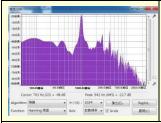


圖 4-6-3 實驗的地點環境分貝測試說明圖

(四)以音樂編輯軟體 Audacity 匯出音頻,分析頻譜

將錄下的聲音,以音樂編輯軟體 Audacity 分析頻譜,取其音調,操作過程截圖 如圖 4-6-4 所示。

- 1.將每個敲擊後錄下的聲音,再以**音樂編輯軟體** Audacity 分析頻譜。
- 2.取其**峰值**,就是敲擊時發出聲音的音調(Hz)。
- 3.為了避免誤差,每個木頭都敲擊三次,再求其平均值。

圖 4-6-4 音樂編輯軟體 Audacity 操作分析頻譜說明圖

伍、研究過程、結果和討論

《研究一》探討不同「琴座(琴架)寬度」和「音調」、「音量」的變化關係

這個實驗的主要目的,是想要知道,不同的琴座寬度,會不會影響木琴敲擊時「音量」的大小和「音調」的高低變化?

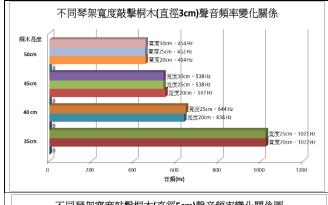
(一)研究過程

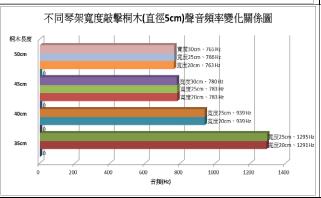
- 1.以不同長度(30cm、35cm、40cm、45cm、50cm)的桐木、松木、杉木來測試。
- 2.配合不同長度的三種木頭,設計琴座的寬度為: 20cm、25cm、30cm。
- 3.以自行設計的木琴敲擊器來敲擊木頭,並測量音量大小和音調高低。
- 4.以教育部免費音樂編輯軟體 Audacity 匯出音頻,取其峰值為敲擊時的音調。
- 5.研究過程和說明,如圖 5-1-1 所示。

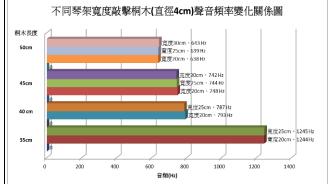
1.準備直徑、長度各 不相同的木頭

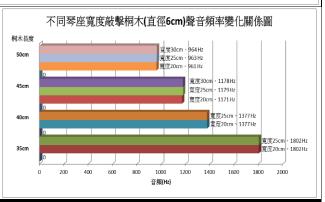
2.測量琴座的位置 和寬度

3.進行敲擊,測試分 貝並錄下聲音




4.以 Audacity 音樂軟體分析音調


圖 5-1-1 探討木琴「琴座寬度」和「音調」、「音量」的變化關係實驗過程說明圖


(二)研究結果

1.我們將測量到的結果記錄下來,並轉換成圖表,如圖 5-1-2、圖 5-1-3 所示。

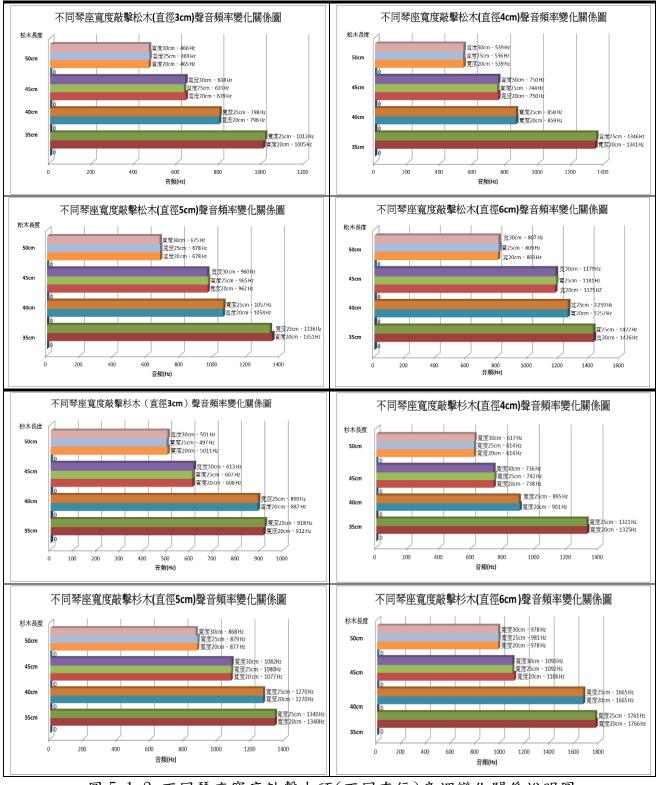


圖 5-1-2 不同琴座寬度敲擊木頭(不同直徑)音調變化關係說明圖

2.從圖 5-1-2 的研究結果,我們發現:

- (1)敲擊直徑(3cm、4cm、5cm、6cm),不同長度(30cm、35cm、40cm、45cm、50 cm)的桐木、松木、杉木,不同的琴座寬度(20cm、25cm、30cm),對音調的影響並不大,甚至部分的音調都一樣。
- (2)我們推測:琴座的寬度並不會影響木琴打擊時的「音調」變化。

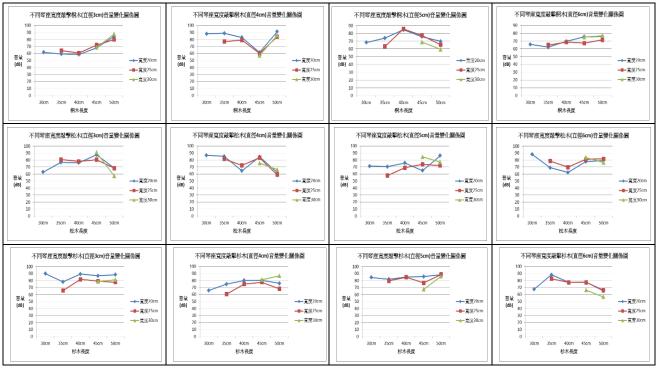
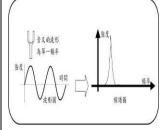
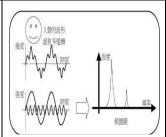


圖 5-1-3 不同琴架寬度敲擊木頭(不同直徑)音量變化關係說明圖

- 3.從圖 5-1-3 的研究結果,我們發現:
 - (1)敲擊不同直徑,不同長度的桐木、松木、杉木,不同的琴座寬度,對音量, 並未發現有明顯的規律性。
 - (2)我們推測:琴座的寬度似乎也不會影響「音量」的變化。

(三)討論


- 1.雖然琴座的寬度,並不會影響木琴敲擊時的音調變化,為了控制變因,未來進行敲擊測試實驗時,統一以「20cm」的寬度放置琴座,以控制變因。
- 2.利用 Audacity 音樂編輯軟體,如何測量木頭敲擊時的「音調」?準確嗎?
 - (1) Audacity 是<u>教育部校園自由數位資源中心</u>提供的下載軟體,是屬於免費的音樂編輯軟體,能夠直接看見聲音的波形,甚至能夠分析聲音頻率喔。
 - (2) Audacity 音樂編輯軟體是如何分析頻率的呢?也就是所謂的「傅立葉轉換」, 對於我們小學生真的是太難了。但是,從圖 5-1-4,應該可以簡單了解和應用。


1.利用手機下載的 AudioSigGen產生600 赫茲的單頻聲音

2. 以 Audacity 音樂編輯軟體分析得出聲音頻率為 603 赫茲

3. 單一頻率的波,畫 成頻譜關係圖就是單 一個峰值

4. 如果是複合波,畫 出來的頻譜可能就會 出現兩個以上的峰值

圖 5-1-4 Audacity 音樂編輯軟體分析聲音頻譜說明圖

- (3)參考過很多有關利用 Audacity 音樂編輯軟體來分析聲音頻率的文獻,大多是以 Audacity 音樂編輯軟體的「頻譜分析」中出現的峰值,來代表聲音的頻率(音調),也幾乎都是準確的。
- (以上資料取自 Kiwi 物理教室-看得見的數位聲音 http://kiwiphysics.blogspot.tw/2015/12/blog-post.html)

《研究二》探討不同的「打擊力量」和「音調」、「音量」的變化關係

這個實驗的主要目的,是想要知道,不同的打擊力量,會不會影響木琴「音量」 的大小和「音調」的高低變化?

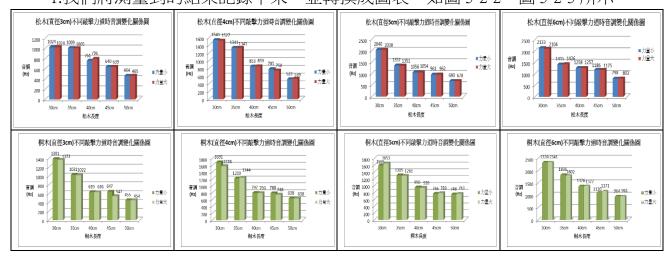
(一)研究過程

- 1.準備不同長度(30、35、40、45、50cm)的五種木頭,桐木、松木、杉木、橡膠木、 山毛櫸木,來測試。
- 2.琴座的寬度為: 20cm。
- 3.以敲擊的距離(相差 3.5cm),來控制打擊力量大小;而且,每個木頭都敲擊三次, 取平均值。
- 4.以教育部免費音樂編輯軟體 Audacity 匯出音頻,取其峰值為敲擊時的音調。
- 5.研究過程和說明,如圖 5-2-1 所示。

敲擊力量較小

打擊距離相差 3.5cm

敲擊力量較大



分貝計測試+錄音

圖 5-2-1 不同的打擊力量和琴鍵「音調」、「音量」實驗過程說明圖

(二)研究結果

1.我們將測量到的結果記錄下來,並轉換成圖表,如圖 5-2-2、圖 5-2-3 所示。

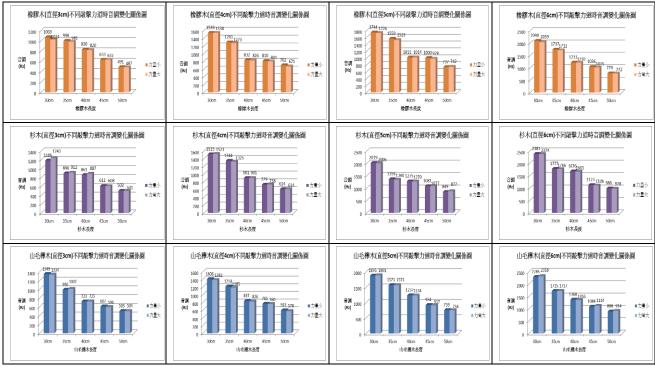
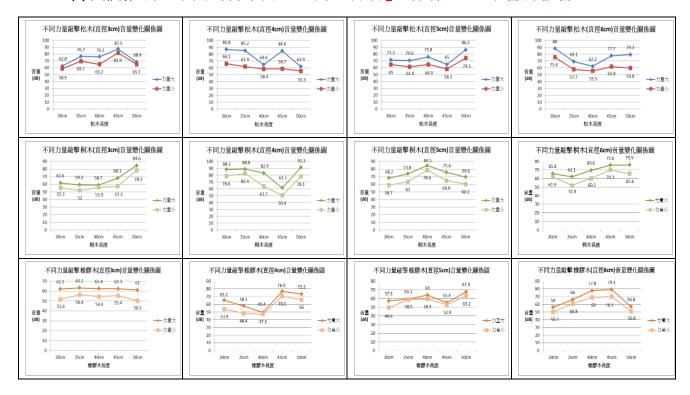



圖 5-2-2 不同的打擊力量和琴鍵「音調」變化關係說明圖

- 2.從圖 5-2-2 的研究結果,我們發現:
 - (1)同一根木頭,在不同的打擊力量下,「**音調**」並沒有出現明顯變化,「**音調**」 的高低都非常地接近,甚至是相同的。
 - (2)我們推測:不同的打擊力量,對「音調」的高低,並不會有影響。

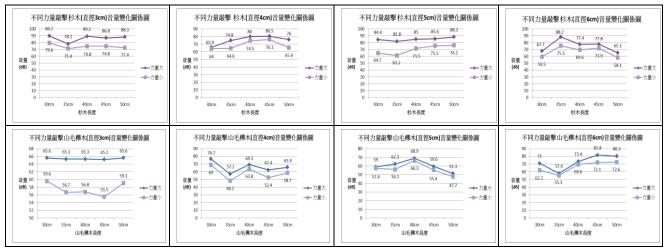


圖 5-2-3 不同的打擊力量和琴鍵「音量」變化關係說明圖

- 3.從圖 5-2-3 的研究結果,我們發現:
 - (1)同一根木頭,在不同的打擊力量下,「**音量**」會很明顯地隨著打擊力量的大小 而變化;而且打擊力較大的音量,都明顯大於力量較小的。
 - (2)我們推測:打擊力量越大,音量越大;打擊力量越小,音量越小。

(三)討論

- 1.打擊的力量,會影響音量大小的變化。所以,未來的實驗過程中,必須控制好 打擊力量的大小。
- 2.為了控制打擊力量,我們以打擊棒「拉回來的距離」控制力量,如圖 4-6-1 說明。
- 3.為了控制變因,未來實驗的打擊力量都必須控制相同的距離。

《研究三》探討「不同材質打擊棒」和「音調」、「音量」的變化關係

不同材質的打擊棒,會不會改變「音調」的高低?會不會改變「音量」的大小?

(一)研究過程

- 1.準備不同長度(30、35、40、45、50cm)的五種木頭:桐木、松木、杉木、橡膠木、 山毛櫸木,來測試。
- 2.琴座的寬度為: 20cm。
- 3.準備不同材質的打擊棒:木頭、金屬、塑膠。
- 4.其他步驟同《研究二》。
- 5.研究過程和說明,如圖 5-3-1 所示。

不同材質打擊棒

塑膠棒打擊

金屬棒打擊

錄下聲音、測試音量

圖 5-3-1 不同材質的打擊棒和琴鍵「音調」、「音量」實驗過程說明圖

(二)研究結果

1.我們將測量到的結果記錄下來,並轉換成圖表,如圖 5-3-2、圖 5-3-3 所示。

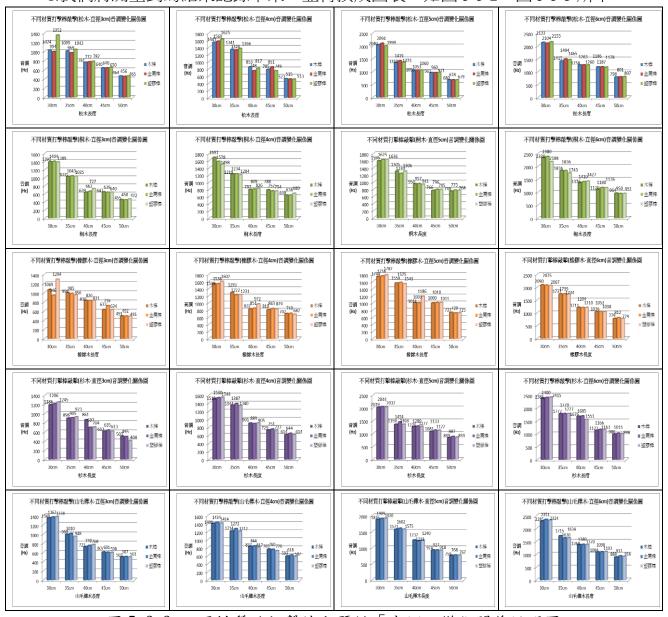
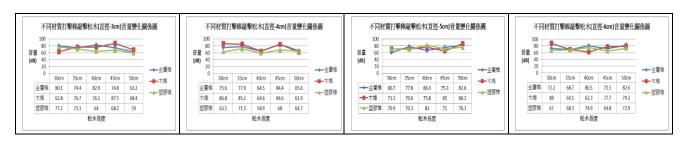



圖 5-3-2 不同材質的打擊棒和琴鍵「音調」變化關係說明圖

- 2.從圖 5-3-2 的研究結果,我們發現:
 - (1)同一根木頭,在不同材質的打擊棒敲擊下,琴鍵的「**音調**」並沒有出現明顯變化,「**音調**」的高低都非常地接近,甚至是相同的。
 - (2)我們推測:不同材質的打擊棒,對「音調」的高低,並不會有影響。

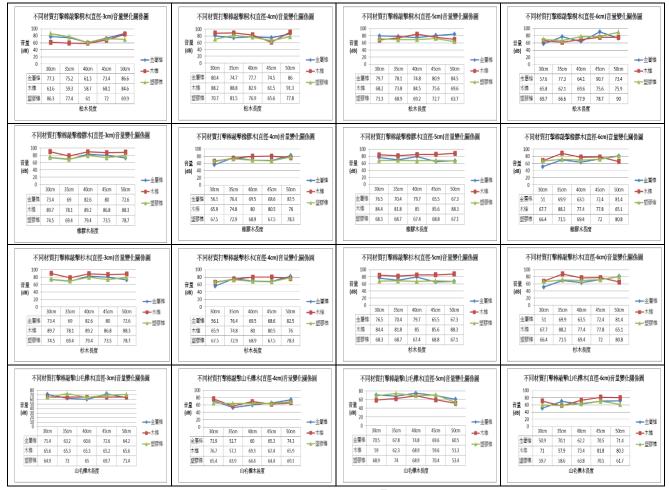


圖 5-3-3 不同材質的打擊棒和琴鍵「音量」變化關係說明圖

- 3.從圖 5-3-3 的研究結果,我們發現:
 - (1)同一根木頭,在不同材質的打擊棒敲擊下,琴鍵的「**音量**」並沒有很明顯且 規律的變化。
 - (2)我們推測:打擊棒的材質,並不會影響「音量」的變化。

(三)討論

1.雖然不同材質的打擊棒,並不會對琴鍵「音量」產生變化影響,但為了「**控制 變因**」,後續的實驗,我們「**都以木棒來敲擊測試**」。

《研究四》探討「琴鍵長短」「琴鍵直徑」和「音調」「音量」的變化關係

琴鍵的長短、琴鍵的直徑大小(粗細),會影響到「音量」的大小或「音調」的高低嗎?為什麼?

(一)研究過程

- 1. 準備五種不同材質的木頭:桐木、松木、橡膠木、杉木、山毛櫸木。
- 2.以不同的長度來測試: 30cm、35cm、40cm、45cm、50cm。
- 3.以不同的直徑來測試: 3cm、4cm、5cm、6cm。
- 4.琴座寬度一律為 20cm、以木棒來敲擊。

- 5.以自行設計的木琴敲擊器來敲擊木頭,並測量「音量」大小和「音調」高低。
- 6.為了避免誤差,每個木頭都敲擊三次,取其平均值。
- 7.實驗過程和說明,如圖 5-4-1 所示。

1.木頭固定位置

2.固定力道敲擊

3.測試分貝並錄音

4.重複檢視和測試

圖 5-4-1 敲擊不同琴鍵長短、不同直徑木頭音調、音量變化關係實驗說明圖

(二)研究結果

1.我們將實驗測量到的結果記錄下來,並轉換成圖表說明,如圖 5-4-2、圖 5-4-3 所示。

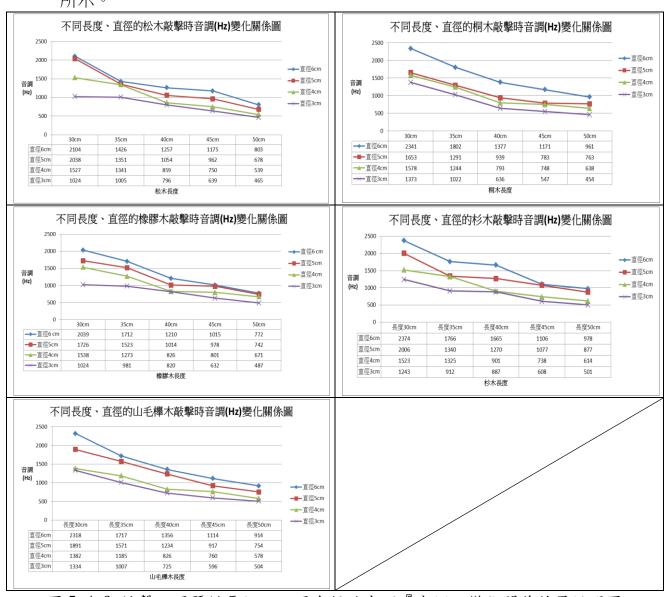


圖 5-4-2 敲擊不同琴鍵長短、不同直徑的木頭『音調』變化關係結果說明圖

- 2. 依據圖 5-4-2 的實驗結果, 我們發現:
 - (1)這五種木頭的音調高低,都會隨著木頭的長度變化而改變。**我們推測:木頭 的『長度越短,音調越高;長度越長,音調越低』。**
 - (2)木頭的粗細(直徑大小),也會影響木頭的音調高低。**我們推測:木頭的『直徑** 越大(較粗),音調越高;直徑越小(較細),音調越低』。

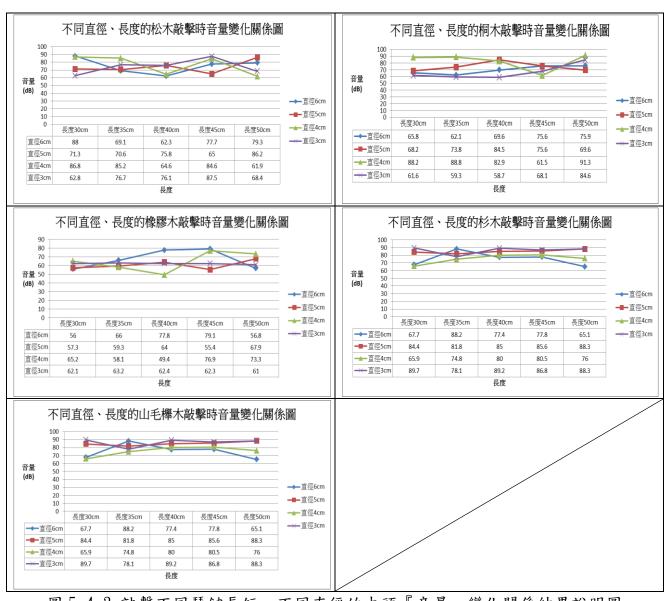


圖 5-4-3 敲擊不同琴鍵長短、不同直徑的木頭『音量』變化關係結果說明圖

- 3.依據圖 5-4-3 的實驗結果,我們發現:
 - (1)不管是哪一種木頭,敲擊時的音量大小,並未發現有明顯且規律性的變化。
 - (2)我們推測:木頭的長短、粗細,並不會影響音量的大小。

(三)討論

- 1.聲音的高低,要依主要振動的部位來判斷,與發音體的形狀、體積、質量都有關係;發音體越輕、越薄、越短、越細、<mark>越緊密者</mark>就振動得越快,音調就越高
- 2. 『**琴座的寬度』、『木頭的長短、粗細**』,似乎都和『**音量**』沒有明顯的變化關係,不同的木頭材質,會不會影響音量的大小呢?

- 3.經過資料查詢(百度百科 https://baike.baidu.com/item/%E6%9C%A8%E7%90%B4),「木琴」的發聲原理說明如下:
 - (1)琴鍵的音調高低,取決於木條的長度和厚度。
 - (2)短而厚的木條會發出比較高的聲音;長而薄的木條,發出的聲音較低。
- 4.我們的實驗結果,完全符合「木琴」的發聲原理。

《研究五》探討不同「木頭材質」和「音調」、「音量」的變化關係

木琴的音調高低、音量大小,會因為不同材質的木頭而改變嗎?

(一)研究過程

- 1.同樣準備:桐木、松木、橡膠木、杉木、山毛櫸木這五種木頭。
- 2.以不同的長度來測試: 30cm、35cm、40cm、45cm、50cm。
- 3.以不同的直徑來測試: 3cm、4cm、5cm、6cm。
- 4.實驗步驟同《研究四》。

(二)研究結果

1.我們將實驗測量到的結果記錄下來,並轉換成圖表說明,如圖 5-5-1、圖 5-5-2 所示。

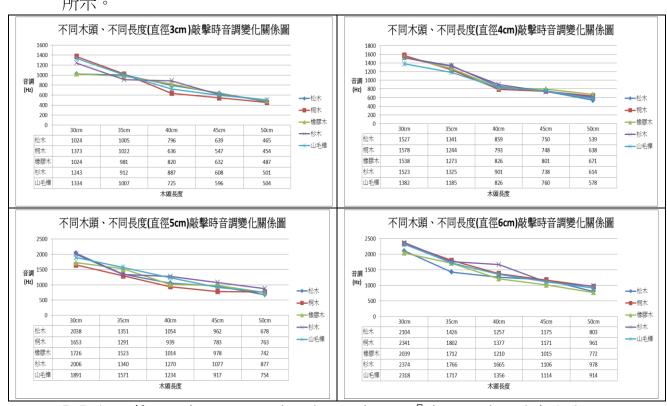


圖 5-5-1 敲擊不同木頭、不同琴鍵長短、直徑的『音調』變化關係結果說明圖

- 2.依據圖 5-5-1 的實驗結果,我們發現:
 - (1)木頭長度越短,音調越高;長度越長,音調越低。
 - (2)不同材質的木頭, 敲擊時的音調高低, 並未發現有明顯且規律性的變化。
 - (3)我們推測:不同材質的木頭,對音調的高低變化,並不會有影響。

圖 5-5-2 敲擊不同木頭、不同琴鍵長短、直徑的『音量』變化關係結果說明圖

- 3.依據圖 5-5-2 的圖表顯示,不同材質的木頭,對「音量」的影響,似乎沒有明顯的規律變化,但是我們發現:
 - (1)橡膠木、山毛櫸木,敲擊時的音量,似乎比較小。
 - (2)松木、桐木、杉木, 敲擊時的音量, 似乎比較大。
 - (3)我們推測:不同的木頭材質,對「音量」的變化可能會有影響。

(三)討論

- 1.木琴敲擊時的音量,和木頭的長短、粗細沒有明顯的變化關係。
- 2.木琴敲擊時的音量,和木頭的『材質』,會有關係嗎?
- 3.我們將 5 種不同材質的木頭,不分長短、粗細,將全部敲擊的『音量大小』依 序由小到大排列出來,如圖 5-5-3 所示。

圖 5-5-3 敲擊不同材質的木頭音量變化關係說明圖

- 3.從圖 5-5-3 的實驗結果,我們發現:
- (1)杉木敲擊時的『音量』最大,音量大約65.1~89.7dB。
- (2)橡膠木敲擊時的『音量』最小,音量大約 49.4~79.1dB。
- (3)我們推測:不同材質的木頭,會影響敲擊時『音量』的變化關係。
- 4.還有其他的因素會影響敲擊時的音量變化嗎?老師建議我們以木頭的『密度』 來測試看看。

《研究六》探討各種木頭的「密度」和「音調」、「音量」的變化關係

前面的實驗,我們發現相同長度和直徑的木頭,不同的材質,木頭重量似乎不太 相同?我們將每根木頭測量直徑、長度、重量,並計算出密度,試著找出影響音量的 變化原因。

(一)研究過程

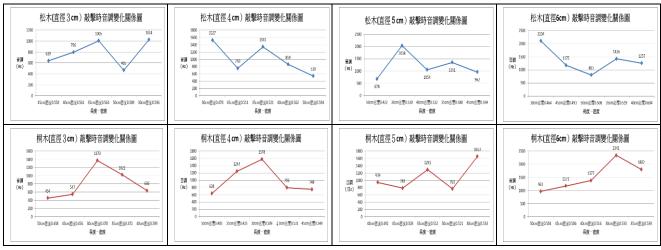
- 1.準備游標尺測量木頭直徑;電子秤測量重量;直尺測量長度。
- 2.計算木頭的體積:半徑*半徑*3.14*長度。
- 3.計算木頭的密度:重量/體積。
- 4.其他敲擊測試的實驗步,同《研究四》。
- 5.實驗過程、步驟、說明和結果,如圖 5-6-1 所示。

測量木頭直徑

測量木頭直徑

測量木頭長度

圖 5-6-1 測量各種不同材質直徑、重量、長度說明圖


(二)研究結果

1.我們將實驗測量各種木頭的「密度」記錄下來,如圖 5-6-2 所示。

			松木				L			桐木			
		長度30cm	長度35cm	長度40cm	長度45cm	長度50cm			長度30cm	長度35cm	長度40cm	長度45cm	長度50c
	重量	367.8	479.6	660.7	585.8	670.1		重量	422.3	481.2	545.3	601.7	665.3
L	直徑	5.8	5.8	5.9	5.8	5.8		直徑	5.8	5.7	5.8	5.8	5.8
直徑6cm	體積	792.222	924.259	1093.034	1188.333	1320.37	直徑6cm	體積	792.222	892.66275	1056.296	1188.333	1320.37
	密度	0.464	0.519	0.604	0.493	0.508		密度	0.533	0.539	0.516	0.506	0.504
	音量 重量	88 312.1	69.1	62.3 385.2	77.7 463.4	79.3		音量 重量	65.8 254.1	62.1 284.6	69.6 326.8	75.6 359.7	75.9 395.9
-	直徑	5	367.2 4.8	385.2 4.8	463.4	381.2 4.8		直徑	4.5	4.5	4.6	4.5	395.9
直徑5cm	體積	588.75	633.024	723.456	780.32925	904.32	直徑5cm	體積	476.8875	556.36875	664.424	715.33125	759.88
EL ILLOUIT	密度	0.530	0.580	0.532	0.594	0.422		密度	0.533	0.512	0.492	0.503	0.521
<u> </u>	音量	71.3	70.6	75.8	65	86,2		音量	68,2	73,8	84.5	75,6	69,6
	重量	159.9	206.6	268.5	260.5	306.7		重量	182.5	159.9	204.4	280.2	217.7
	直徑	3.8	3.8	3.9	3.8	3.7	直徑4cm	直徑	3.9	3.7	3.5	3.8	3.7
直徑4cm	體積	340.062	396.739	477.594	510.093	537.3325		體積	358.1955	376.13275	384.65	510.093	537.332
	密度	0.470	0.521	0.562	0.511	0.571		密度	0.509	0.425	0.531	0.549	0.405
	音量	86.8	85.2	64.6	84.6	61.9		音量	88.2	88.8	82.9	61.5	91.3
L	重量	102.3	121.4	138	152.4	168.6		重量	80.7	94.5	117.5	117.4	134.7
rtr 400 2	直徑	2.7	2.8	2.8	2.8	2.7	785 500 2	直徑	2.7	2.7	2.5	2.7	2.8
直徑3cm	體積 密度	171.6795 0,596	215,404 0,564	246.176 0.561	276.948 0,550	286.1325 0,589	直徑3cm	體積 密度	171.6795 0,470	200.29275 0.472	196.25 0,599	257.51925 0.456	307.72 0.438
-	密度 音量	0.596 62.8	76.7	76.1	0,550 87,5	0.589 68.4		密度 音量	61.6	59,3	0.599 58.7	0.456 68.1	0,438 84,6
-	H 35	02.0		7012	0715			Has	0110		•	00,1	0.110
			杉木							橡膠木			
		長度30cm	長度35cm	長度40cm	長度45cm	長度50cm			長度30cm	長度35cm	長度40cm	長度45cm	長度50cr
-	重量	434.5	461.1 5.8	571.1	599.8	760 5.7	直徑6cm	重量	575.4	690.7 5.8	749.5	855.5	1013.2
tir 200 Gama	直徑	5.8	50	5.8	5.8	217		直徑	5.6	5.0	5.7	5.8	5.8
直徑6cm	體積 密度	792.222 0.548	924.259 0.499	1056.296 0.541	1188.333 0.505	1275.2325 0.596		體積	738.528 0.779	924.259 0.747	1020.186 0.735	1188.333 0.720	1320.37 0.767
F	音量	67.7	88.2	77.4	77.8	65.1		密度	56	66	77.8	79.1	56.8
	重量	315.1	375.7	440.3	496.1	394.4	直徑5cm	重量	449.1	470.4	535.7	675.5	656.9
	直徑	4.8	4.8	4,9	5	4.9		直徑	4.9	4.9	4.9	4.9	4.9
直徑5cm	體積	542.592	633.024	753.914	883.125	942.3925		體積	565.4355	659.67475	753.914	848.15325	942.3925
	密度	0.581	0.594	0.584	0.562	0.419		密度	0.794	0.713	0.711	0.796	0.697
	音量	84.4	81.8	85	85.6	88.3		音量	57.3	59.3	64	55.4	67.9
	重量	228.6	168.4	167.2	203.1	233.9		重量	231	286.4	369.1	317.3	354.5
L	直徑	3.9	3.5	3.6	3.7	3.7		直徑	3.8	3.9	3.8	3.8	3.8
直徑4cm	體積	358.1955	336.56875	406.944	483.59925	537.3325	直徑4cm	體積	340.062	417.89475	453.416	510.093	566.77
-	密度	0.638	0.500	0.411	0.420	0.435		密度	0.679	0.685	0.814	0.622	0.625
	音量 重量	65.9 95.4	74.8 139.4	80 142.4	80.5 159	76 173.8		音量 重量	65.2 164.4	58.1 187.4	49.4 215.8	76.9 241	73.3 277.1
-	直徑	2.7	2.8	2.8	2.7	2.7		直徑	3	3	3	3	3
直徑3cm	體積	171.6795	215.404	246.176	257.51925	286.1325	直徑3cm	體積	211.95	247.275	282.6	317.925	353.25
	密度	0.556	0.647	0.578	0.617	0.607		密度	0.776	0.758	0.764	0.758	0.784
	音量	89.7	78.1	89.2	86.8	88.3		音量	62.1	63.2	62.4	62.3	61
								•					
			山毛欅フ						不同	木頭密度變化	- 關係圖		
	es III	長度30cm 569.6	長度35cm 752.4	長度40cm 810.5	長度45cm	長度50cm 944.7	1.000						
直徑6cm	重量	5.8	752,4 5.7	810.5 5.7	837.4 5.7	5.8							
	燈積	792.222	892.66275	1020.186	1147.70925	1320.37	0.900					* * * *	 *
Jan. 1.1.00111	密度	0.719	0.843	0.794	0,730	0.715					× ×		_
	音量	71	57.9	73.4	81.8	80.3	0.800		* * *	* * *	<u> </u>	* * *	
	重量	458.1	530.3	599.1	682.3	824.7	0.700	* *	* * *				
	直徑	5	5	5	5	5	密度 ※	*	_			~	→
直徑5cm	體積	588.75	686.875	785	883.125	981.25	0.600				X	* * *	-
L	密度	0.778	0.772	0.763	0.773	0.840				* * *			
	音量	59	62.3	68.9	59.6	51.3	0.500	-					
-	重量	166.2	269.2 3.5	227.2	350.6	370.8							→- +
tir itt 4 om	直徑	3.3		3.3	3.5	3.5	0.400						
直徑4cm	體積 密度	256.4595 0.648	336,56875 0,800	341.946 0.664	432.73125 0.810	480.8125 0.771	0.300						
	密度 音量	76,7	57.2	69,3	62.4	65.9		22 0.464 0.470 0.493	0.508 0.511 0.519 0.52	1 0.530 0.532 0.550 0.5	561 0.562 0.564 0.571	0.580 0.589 0.594 0.59	6 0.604
	重量	161.2	190.8	216.6	246.3	273	──- 桐木 0.40	05 0.425 0.438 0.456	0.470 0.472 0.492 0.50	3 0.504 0.506 0.509 0.5	512 0.516 0.521 0.531	0.533 0.533 0.539 0.54	9 0.599
	直徑	2.8	2.8	2.8	2.8	2,8				0 0.735 0.747 0.758 0.			
Г		_					→ 杉木 0.41	11 0.419 0.420 0.435	0.499 0.500 0.505 0.54	1 0.548 0.556 0.562 0.5	578 0.581 0.584 0.594	0.596 0.607 0.617 0.63	8 0.647
直徑3cm		184.632	215.404	246.176	276.948	307.72		10 0 001 0 315 0	0.700 0.700 0.770	0 0 770 0 770 0 7 1 1			7 0 000
直徑3cm	體積 密度	184.632 0.873	215.404 0.886	246.176 0.880	276.948 0.889	0.887		48 0.664 0.715 0.719	0.730 0.763 0.771 0.77	2 0.773 0.778 0.794 0.8			7 0.889

圖 5-6-2 各種木頭的密度測量結果說明圖

2.我們再將木頭的「密度」和「音調」、「音量」的變化關係結果記錄下來,並轉換成圖表,如圖 5-6-3、圖 5-6-4 所示。

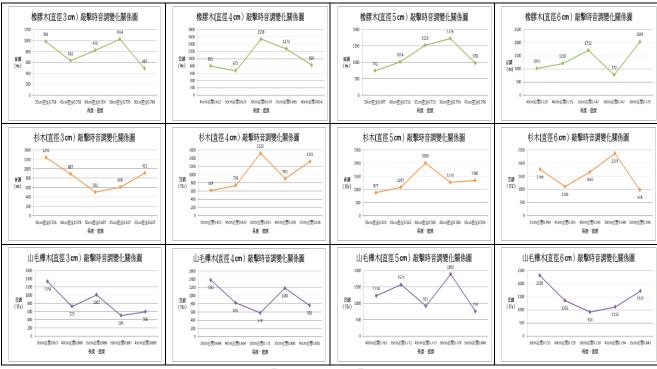
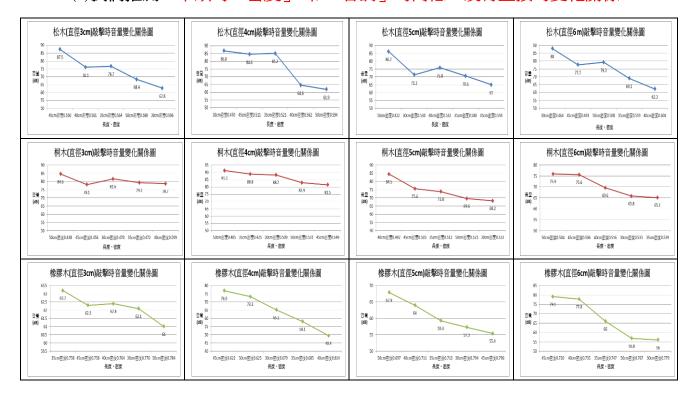



圖 5-6-3 各種木頭「密度」和「音調」變化關係說明圖

- 3.依據圖 5-6-3 的實驗結果,我們發現:
- (1)不管是哪一種木頭,敲擊時的「音調」高低,並未發現有規律性。
- (2)我們推測:木頭的「密度」,和「音調」的高低,沒有直接的變化關係。

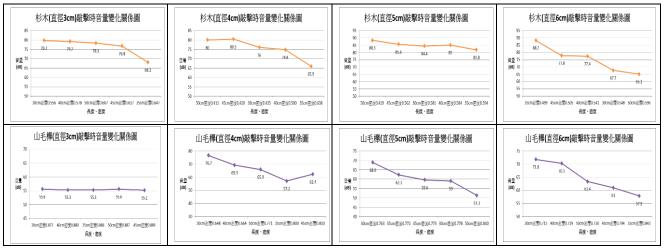


圖 5-6-4 各種木頭的「密度」和「音量」變化關係說明圖

- 3.依據圖 5-6-4 的實驗結果,我們發現:
 - (1)不管是哪一種木頭, 敲擊時「音量」的大小, 會隨著木頭密度的大小而改變; **密度越小的木頭, 音量越大; 密度越大的木頭, 音量反而越小**。
- (2)我們推測:木頭的「密度」,是影響「音量」大小的關鍵因素。

《研究七》探討泰雅木琴「音調」、「音量」的變化關係

我們手工製作的泰雅木琴,「音調」和「音量」的變化關係為何?是否符合音階的 頻率標準?

泰雅木琴的「抓音」與音階制定

依據<u>江牧師</u>多年的研究發現:泰雅族的傳統音樂之音階結構是「Re、Mi、Sol、 La」或「Sol、La、Do、Re」,分析音階結構是維持小三度,上和下各加大二度。

無論是泰雅族的歌謠或樂器的曲目大部份是這四個音階;也有的歌要只用到二音結構,如:「Do、Re」;「Sol、La」;「La、Do」;「Mi、La」。分析上,是有大二度和小三度的兩種結構。也有的歌是三音結構,如:「Mi、Sol、La」;「La、Do、Re」。就分析上是維持小三度,上加大二度。

由此可知,它是隨著一個人從小到大所實用的語言和音樂的音域、生命的歷程… 等有關,所以我們所使用的音階是漸進式的音階。

泰雅木琴除了自愉娛樂,是很「隨興的樂器」,沒有「固定音階」,而是利用「首調音階」來抓音。它也可以配搭歌唱,當然也可以配合歌唱者調音,製作專屬的木琴唷。

(一)研究過程

- 1.請<u>工牧師</u>指導我們製作二組木琴(分成 $A \times B$ 二組),我們也學習木琴的製作,詳細製作過程和說明,如圖 4-4-2 所示。
- 2.測試泰雅木琴四個琴鍵的「音調」和「音量」,測試過程和方法,同《研究四》。
- 3.將測得的「音調」和音名頻率標準對照表比較其準確度,再和其他木頭的「音

量」比較大小。

4.自製二組泰雅木琴過程說明,如圖 5-7-1 所示。

圖 5-7-1 手工製作的泰雅木琴琴鍵長度測量、音調標示說明圖

(二)研究結果

1.我們將實驗測量到的結果記錄下來,並轉換成圖表說明,如圖 5-7-2 所示。

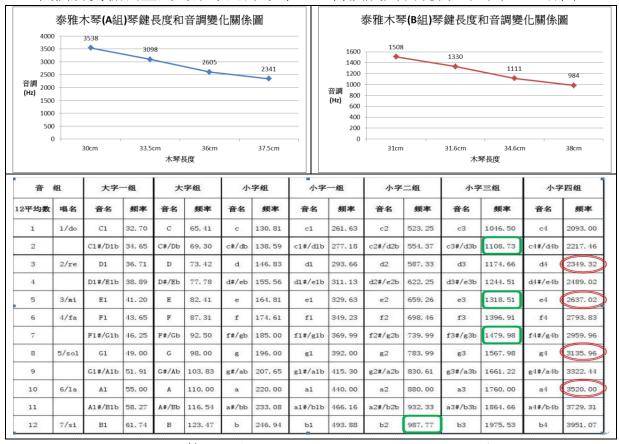


圖 5-7-2 手工製作的泰雅木琴琴鍵長度和音調變化關係說明圖

- 2.依據圖 5-7-2 的實驗結果,我們發現:
 - (1)自製的泰雅木琴,和前面的實驗結果相同:「**琴鍵越短、音調越高;琴鍵越長、音調越低**」。
 - (2)自製泰雅木琴,琴鍵的長度大約在30~40cm之間。
 - (3)自製的木琴(A 組):音調頻率分析結果和音階標準表類似「Re、Mi、Sol、La」。
 - (4)自製的木琴(B組):音調頻率分析結果和音階標準表類似「Si、Do、Mi、Fa」。
 - (5)泰雅木琴並沒有固定音階,而是首調音階,可以依取材的木頭調整音階高低。
 - (6)我們推測:自製的泰雅木琴音階是相當準確的。

3.我們繼續比較自製泰雅木琴(直徑約 3~4cm)和各種木頭(直徑 3、4cm)的音量變化關係,如圖 5-7-3 所示。

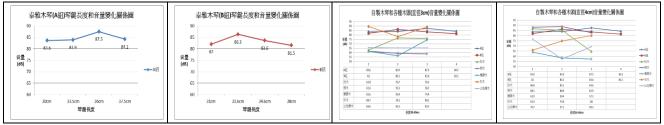


圖 5-7-3 手工製作的泰雅木琴和各種木頭(直徑 3-4cm)音量變化關係說明圖

- 4.依據圖 5-7-3 的實驗結果,我們發現:
 - (1)自製泰雅木琴的音量,和松木、桐木、杉木的音量大小比較接近,算是音量 比較大的材質。
 - (2)我們推測:泰雅的祖先會以油桐、血桐材質來製作木琴,一方面是就地取材, 也是因為經驗的測試結果,音量比較大。

(三)討論

- 1.取下來的木頭為什麼要先放三個月以上?
- 2.我們準備木材溼度計、電子秤和游標尺來測量,並將結果記錄下來並以圖表呈現,如圖 5-7-4 所示。

圖 5-7-4 血桐木的重量和濕度變化關係說明圖

- 3.依據圖 5-7-4 的說明, 我們發現:
- (1)木材取下後,因為還有存著一些水分,所以「重量」和「濕度」會改變(一直下降),木材越變越輕且含水率也下降。
- (2)經過敲擊測試,我們發現木頭的音調會因為含水率的變化,音調也會變化, 無法定音。我們也發現:木頭的音量,也沒有明顯且規律的變化。
- (3)依據以上的發現,泰雅先民的經驗告訴我們:木材取下後不能馬上製作木琴, 怕會變形,也怕因為水分、重量改變而影響製作的音調準確性。
- 4.早期泰雅木琴的製作都是利用感官調音,會製作的耆老,大都是對音感有絕佳的靈敏度。
- 5.未來,我們可以利用本研究的科學原理、音樂軟體,來協助泰雅木琴的製作。

陸、結論

- 一、泰雅木琴是泰雅族原住民特有的傳統樂器。
 - (一)泰雅原住民的木琴製作,主要材質是「就地取材」的鹽膚木、油桐木或血桐木等經濟價值較低的木頭。
 - (二)泰雅木琴的構造主要有四個琴鍵和琴座及打擊棒。
 - (三)泰雅木琴的製作,需加工調整琴鍵的長短、粗細,來製作高低不同的樂音。
- 二、泰雅木琴「琴座」的寬度,並不會影響木琴敲擊時「音調」和「音量」的變化。
- 三、不同的「打擊力量」,會影響「音量」的大小;但是不會改變「音調」。
 - (一)木琴的打擊「力量越大,音量越大」;打擊「力量越小:音量也就越小」。
 - (二)「音調」並不會因為打擊力量而改變。
- 四、不同材質的打擊棒,並不會影響木琴「音調」和「音量」的變化。
- 五、琴鍵的長短,會改變「音調」的高低,但是不會影響「音量」的大小。
 - (一)琴鍵越長,音調越低;琴鍵越短,音調越高
 - (二)不管琴鍵的長短,並不會改變音量的大小。
- 六、琴鍵的粗細,也會改變「音調」的高低,但是不會影響「音量」的大小。
 - (一)琴鍵越細(直徑較小),音調越低;琴鍵越粗(直徑較大),音調越高
 - (二)不管琴鍵的粗細(直徑大小),並不會改變音量的大小。
- 七、不同木頭的材質,不會影響「音調」的高低,但是會改變「音量」的大小。
 - (一)不同的木頭材質,對「音調」影響不大。
 - (二)不同的木頭材質,會影響「音量」的大小,杉木、桐木、松木音量比較大。
 - (三)泰雅木琴會選擇油桐木,除了是就地取材,經濟價值較低的因素以外,音量 比較大、音色比較美也是主要原因。
- 八、木頭的密度,是影響「音量」大小的因素之一,但是不會改變「音調」高低。
 - (一)木頭的「密度越小,音量越大」;「密度越大,音量反而越小」。
 - (二)木頭密度的大小,對音調的高低沒有出現明顯且規律的變化關係。
- 九、木材取下後,要放置三個月以上,才可以製作泰雅琴。
 - (一)因為木頭取下後,「重量」和「濕度」會一直下降改變,而影響音調和音量的 變化,會走音。
 - (二)木琴製作完成後,每隔一段時間還是視情況調整(微調)音調。
- 十、我們手工製作的泰雅木琴,是很「隨興的樂器」,沒有「固定音階」,而是利用 「首調音階」來抓音,未來可以利用調音器來協助調音。
- 十一、「泰雅木琴」的製作與研究,不僅可以延續(泰雅)原住民傳統文化的價值,更可以利用科學原理的探究,發展成為實驗教材或特色課程。

柒、延伸思考與生活應用

一、結合課程、寓教於樂

- 1.結合學校的「**遊學課程**」,「泰雅木琴」不僅可以「**寓教於樂**」,可讓來訪的遊客 自行製作 DIY,甚至現場演奏娛樂,讓外地朋友、學生到學校來體驗不同的民 族文化,相信會是很棒的文化交流。
- 2.發展學校的「**實驗課程**」,配合傳統泰雅原住民部落的文化,泰雅木琴的製作與研究,變成音樂和科學課程的教學活動。
- 3.推動「**鄉土課程**」,每個地方、鄉鎮,都有自己的特色,泰雅木琴可以成為學校 和地方的特色,可以表演、演奏、教學等多功能的一項課程。

二、發展特色、延續價值

- 1.每個民族都有其特殊的傳統文化,但並不是每個原住民族都有木琴的製作和教學,「**泰雅木琴**」是泰雅原住民特有的一項傳統文化,我們更應該延續這項文化的價值。
- 2.很多原住民的特有文化應該要保存,部落裡會製作「**泰雅木琴**」的耆老已經不 多了,也從來沒有人將「**泰雅木琴**」的科學原理記錄下來,我們應該更加發展 與保存。

三、應用科學、傳承文化

- 1.早期的泰雅木琴,都是純手工製作,製作方法其實很簡單,但是調音卻需要對 音感有絕佳靈敏度的耆老才可以。
- 2.如果可以利用科學方法調音,藉由資訊軟體或器材設備,相信很多人都可以輕 鬆學會木琴的製作。
- 3.泰雅木琴的科學原理,可以讓泰雅木琴的製作,變得更容易,未來的推廣也就 不難了,更重要的是文化的傳承。
- 4.部落耆老說,目前會製作泰雅木琴的族人已經不多了,一方面是沒有完整的研究和紀錄,都是經驗傳承和口耳相傳。如果可以利用科學原理來記錄和學習, 一定可以更加快速和完整,使木琴文化傳承下去

四、創新求變、展望未來

- 1.其實任何木材都可以製作成木琴的,原住民主要是因為「**就地取材**」,所以選用 油桐、鹽木,未來可製作成各種不同材質的木琴,相互比較研究。
- 2.「泰雅木琴」只有四個琴鍵,未來可以創新改變更多琴鍵的大型木琴,不僅是 文化的傳承,更是一項變化與創意的應用。

捌、參考資料

- 一、台灣原住民族文化知識網 http://www.knowlegde.ipc.gov.taipei/ct.asp?xItem=1001800&CtNode=17251&mp=cb01
- 二、91年康軒版國小四上藝術與人文教師手冊
- 三、音階的制定
 http://beaver.ncnu.edu.tw/projects/emag/article/200906/%E9%9F%B3%E9%9A%8E%E7
 %9A%84%E5%88%B6%E8%A8%82.pdf
- 四、頻率對聲音的影響 http://ww2.anjh.tn.edu.tw/teacher/na/na3/%E8%AE%93%E6%B3%A2%E5%8B%95%E8"%B5%B7%E4%BE%86/content/wave3-1-4.html
- 五、維基百科-聲音 https://zh.wikipedia.org/wiki/%E9%9F%B3%E9%AB%98
- 六、樂音的要素 https://www.nani.com.tw/nani/jlearn/natu/ability/a1/3 a1 3 3.htm
- 七、樂音與噪音 http://w3.fhsh.tp.edu.tw/sub/subject04/handout/h1/4-3.pdf
- 八、音名的頻率標準 http://www.dwenzhao.cn/profession/basic/freq_music.html
- 九、音調 https://www.eduhk.hk/has/phys/sound/sound11.htm
- 十、看得見的數位聲音 http://kiwiphysics.blogspot.tw/2015/12/blog-post.html
- 十一、音高與音色辨識之探討
 https://activity.ntsec.gov.tw/activity/race-2/2005/pdf/110004-04.pdf
- 十二、聲音的產生與傳播 http://tmw3.tmps.tp.edu.tw/joanne/voi/v1.html
- 十三、百度百科(木琴)https://baike.baidu.com/item/%E6%9C%A8%E7%90%B4
- 十四、音材施教-音高與音色辨識之探討 https://activity.ntsec.gov.tw/activity/race-2/2005/pdf/110004-04.pdf
- 十五、台灣原住民樂器之研究 <u>file:///C:/Users/Police/Downloads/Microsoft+Word+-+%E5%8F%B0%E7%81%A3%E</u> <u>5%8E%9F%E4%BD%8F%E6%B0%91%E6%A8%82%E5%99%A8%E4%B9%8B%E</u> <u>7%A0%94%E7%A9%B6%EF%BC%88%E8%AB%96%E6%96%87%EF%BC%89.pd</u> f
- 十六、臺灣原住民族文化知識網 傳統樂器介紹
 http://www.knowlegde.ipc.gov.taipei/fp.asp?fpage=cp&xItem=1001694&CtNode=1724
 1&mp=cb01