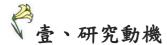
第二屆 清華與華碩網路原住民科展 飛鼠部落生態文化與科學智慧

魯凱智慧「石」在有用 研究報告書

團隊名稱:得樂勒卡科學研究小組

團隊成員:賴羽倩、魯慧恩、田儀馨、沈怡安


指導老師:鍾志華、張雅玲

石版是我們魯凱族傳統住屋的建材,族人認為石版屋能冬暖夏涼,因此,我們以石版、 紅磚頭、大理石和瓷磚,這四項常見建材來實證它們在吸熱、散熱、導熱和抗腐蝕的情形。

在吸熱方面,紅磚頭>石版>大理石>瓷磚;散熱方面,石版>大理石>瓷磚>紅磚頭。 導熱實驗中,瓷磚>石版>大理石>紅磚頭,但是,石版厚度增加到3公分以上後,石版是 最不導熱的。抗硫酸腐蝕能力為瓷磚>紅磚頭>石版>大理石,但是,當硫酸濃度為4.5M 時,各建材抗腐蝕能力的差異並不明顯。

研究結果讓我們了解到祖先選用石版的智慧-散熱特性明顯,又不易導熱,也能抗腐蝕。

很早以前,我們魯凱祖先就選用石版來當建築,建造出舒適的傳統房屋與美麗的村景, 更利用石版來烹飪食物、雕刻我們族群的生活紀綠,甚至當作傳統族人的棺蓋,所以,石版 對魯凱族而言,不僅僅是生活中不可或的物品,更是家鄉文化的代表特色。

此外,在環保思潮下,石版屋屬於天然的綠建築,我們也發現夏天的石版屋內真得很涼爽,不用多耗費電力來開電扇,就能達到自然通風又降溫的效果。所以,我們想用科學數據來表現石版做為建材的優勢,了解石版散熱、吸熱、導熱和抗腐蝕的特性,希望我們的研究能讓更多人了解魯凱祖先選用石版的智慧。

党貳、研究目的

- 一、研究不同建材(石版、紅磚頭、大理石、瓷磚)在不同厚度(1.5 cm、3.0 cm、4.5 cm) 時,吸收太陽輻射熱的差異。
- 二、研究不同建材(石版、紅磚頭、大理石、瓷磚)在不同厚度(1.5 cm、3.0 cm、4.5 cm) 時,散熱效果的差異。
- 三、研究不同建材(石版、紅磚頭、大理石、瓷磚)在不同厚度(1.5 cm、3.0 cm、4.5 cm) 時, 導熱效果的差異。
- 四、研究不同建材(石版、紅磚頭、大理石、瓷磚)在硫酸不同的濃度(4.5M、9.0M、18.0M)中,其抗腐蝕效果的差異。
- 五、經由上述研究結果,了解魯凱族使用石版的傳統智慧。

◇ 参、研究設備

-	•		
編號	名稱	廠牌	規格
1	數位式溫度計	EVERY DAY	E-3630
2	電子天平	AND	HL-400
2	蒸餾水	福歌化工廠	100ml
3	燒杯	永原儀器	250ml
4	硫酸	小島化學	試藥級
5	石版	羅善工作室提供	25 cm x 10 cm x 1.5 cm (3.0 cm · 4.5 cm)
6	紅磚頭	羅善工作室提供	25 cm× 10 cm × 1.5 cm (3.0 cm · 4.5 cm)
7	大理石	羅善工作室提供	25 cm × 10 cm × 1.5 cm (3.0 cm · 4.5 cm)
8	瓷磚	羅善工作室提供	25 cmx 10 cm x 1.5 cm (3.0 cm · 4.5 cm)
9	最高最低溫度計		

肆、研究方法與過程

我們設計實驗以了解石版、紅磚頭、大理石、瓷磚, 這四種建材在吸熱、散熱、導熱和抗腐蝕方面的差異與特 性,並且從研究中發現魯凱祖先運用石版做為建材的智慧。

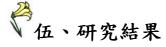
為了比較各建材的特性,我們請羅善先生提供我們石 版和其他建材,並且將建材切割成相同尺寸。羅善是我們 多納魯凱頭目家族的成員,對魯凱文化有深入的瞭解。以 下,是我們研究的過程。

- 一.、研究石版、紅磚頭、大理石<mark>和瓷</mark>磚,對吸熱(太陽輻 射熱)差異
 - (一)取五個燒杯,各裝入100ml蒸餾水,使用數位式 温度計來量測水溫
 - (二)取一塊相同尺寸且厚度為1.5公分的石版、紅磚 頭、大理石和瓷磚,各覆蓋在燒杯上;其中一個燒杯沒有覆蓋建材,做為對照組
 - (三) 將燒杯放置在²學校升旗台
 - (四)每隔一小時測量燒杯內水的變化情形,直到十個小時
 - (五)建材厚度改為二塊(3公分),重覆上述實驗步驟,測量測量十小時內,各小時的水 溫變化
 - (六)建材厚度改為三塊(4.5公分),依據上述實驗步驟

羅善先生在民國九十六年到校的情形,而當時 學校有錄音檔。

石版在家鄉是禁止隨意開採

² 學校的升旗台沒有屋頂覆蓋,能夠接受到太陽的照射;本實驗從早上八點進行到下午六點

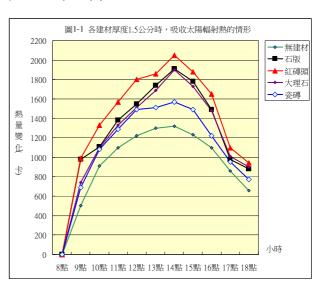

- 二、研究石版、紅磚頭、大理石和瓷磚的散熱效果
 - (一)取五個燒杯,各裝入100ml沸騰的蒸餾水
 - (二)其中四個燒杯,分別蓋上一塊相同尺寸且厚度為 1.5cm 的石版、紅磚頭、大理石和瓷磚; 無覆蓋建材的燒杯做為對照組
 - (三)每隔二分鐘使用數位式溫度計來測量燒杯內水溫的變化,直至二十分鐘止
- 三、研究石版、紅磚頭、大理石、瓷磚,導熱效果的差異
 - (一) 將一塊石版放置在瓦斯爐上
 - (二)把裝有 100ml 水的燒杯放在建材上,並利用數位式溫度計來測量水溫
 - (三)以瓦斯爐加熱,每隔二分鐘使用數位式溫度計測量水溫,直到二十分鐘為止
 - (四) 改用相同尺寸的紅磚頭、大理石和瓷磚,依據上述步驟來測量
 - (五)依據上述實驗步驟,來測量二塊建材(厚度為3公分)、三塊建材(厚度為4.5公分)時,水溫的變化

四、研究石版、紅磚頭、大理石、瓷磚對於硫酸的抗腐蝕性

- (一) 將石版、紅磚頭、大理石、瓷磚<mark>切</mark>割成相同尺寸的小塊,並利用電子天平來測量 其質量
- (二)取四個燒<mark>杯,放入濃度為18M的硫酸</mark>
- (三)分別將石版、紅磚頭、大理石、瓷磚放入燒杯中,每隔 24 小時量測建材的質量變化,直到 240 小時止
- (四)依據上述的實驗步驟,改變硫酸濃度(4.5M、9M),量測建材的質量變化

五、瞭解魯凱族對於石版的傳統智慧

- (一)由上述研究結果,知道石版在吸熱、散熱、導熱和抗腐蝕的特性,以瞭解魯凱族 的石版智慧
- (二) 訪談村中耆老與石版文化相關人士



一、石版、紅磚頭、大理石、瓷磚,對於吸熱能力的差異

(一)不同建材(石版、紅磚頭、大理石、瓷磚) 的吸熱能力差異

我們將實驗取得的數據,整理成表一,放置於研究報告的末頁,並依據數據製成右圖 1-1。由圖 1-1 可知,不同建材在厚度為 1.5 公分時,吸熱能力由大到小依序為:紅磚頭、石版、大理石,瓷磚。

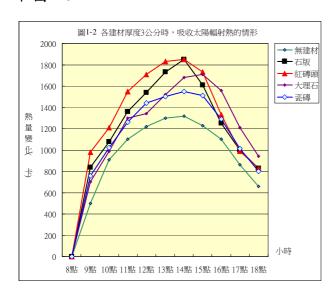
以圖 1-1 來看,早上 8 點到 14 點時,受到太陽輻射能的照射,燒杯內的水溫持續上升,爾後太陽輻射能的減弱,水溫才開始不斷下降。我們將石版、紅磚頭、大理石、瓷磚在早上 8 點到 14 點的平均熱量吸收速率整理成下表五的數據。

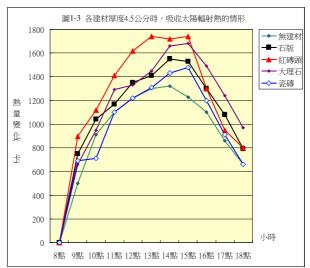
表五 在8點~14點,各建材均熱量吸收速率

建材種類	石版			*	紅磚頭			大理石			瓷磚		
建材厚度(cm)	1.5	3.0	4.5	1.5	3.0	4.5	1.5	3.0	4.5	1.5	3.0	4.5	建材
吸收熱量速率 (cal/min)	5.3	5.1	4.3	5.7	5.1	4.8	5.3	4.7	4.6	4.4	4.3	4.0	3.7

我們魯凱祖先選用的石版,在吸熱能力方面僅次於紅磚頭,卻比大理石和瓷磚還好。但是,紅磚頭是人工高溫加工製成,石版卻是天然的建材,我們祖先能有智慧的選用石版,難怪我們會覺得冬天在石版屋裡比較暖溫。

今年十月二日、三日,我們在多納村村口找到一戶石版屋讓我們放置最高最低溫度計,並且在該石版屋附近找到另一戶(非石版屋建築),溫度計放置二日後,我們發現石版屋裡最高溫是 $31^{\circ}\mathbb{C}$,最低為 $25^{\circ}\mathbb{C}$;一般建材的房屋室內最高溫 $30^{\circ}\mathbb{C}$,最低為 $26^{\circ}\mathbb{C}$ 。同樣地,我們在 $3^{\circ}\mathbb{E}$ 對於也放置了最高最低溫度計,室內最高溫 $30^{\circ}\mathbb{C}$,最低為 $28^{\circ}\mathbb{C}$ 。可見,石版屋具有冬暖的特性。




將最高最低溫度計放在多納村村口的石版屋裡

³ 多納村是我們家鄉地勢最高的村落,村內石版屋的數量較萬山村與茂林村多。我們學校在茂林村,是三個部落中,到山下平地最近的

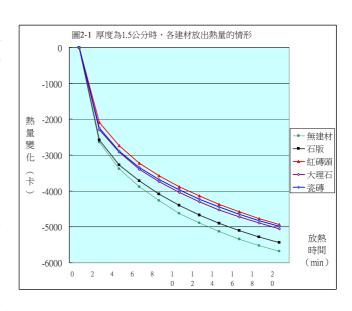
(二)不同厚度時,不同建材在吸熱能力的差異

我們研究不同厚度對於太陽能吸收的差異,並且根據研究數據,製做成圖 1-1、圖 1-2,和圖 1-3。

研究結果發現,沒有覆蓋任何建材的對照組,吸收太陽輻射熱的效率是最差的,可見, 覆蓋建材的覆蓋會增進太陽的吸收。

我們也發現,不論是石版、紅磚頭、大理石或瓷磚,當這些建材的厚度愈厚時,吸熱的速率就會愈慢。我們和老師討論過這種情形後,我們認為建材的厚度愈厚,反而阻隔了太陽輻射熱,使得燒杯中的水溫沒有上升。

老師指導我們進行實驗。 後方的升旗台是我們放置燒杯, 以測量不同建材吸收太陽輻射熱的情形


二、石版、紅磚頭、大理石、瓷磚的散熱效果差異

(一)不同建材的散熱效果

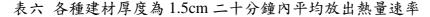
我們將實驗取得的數據,整理成表二,放 置於研究報告頁末。圖 2-1 為建材厚度 1.5 公 分時,各組實驗的放熱情形。

由圖 2-1,我們得知在厚度同為 1.5 公分時,放熱速率由快到慢依序為:石版>大理石>瓷磚>紅磚頭。即使改變厚度為 3 公分和 4.5 公分,石版依然是放熱速率最快的建材。

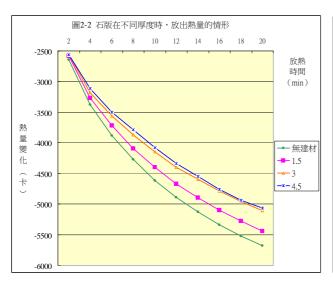
我們在自然課程中有學到,在無外力作功的狀況下,熱量會由高往低移動,而且溫差愈大,移動的速率也就愈快。於是,我們在相同環境中,又測量了石版、大理石、紅磚頭和瓷磚的表面溫度,測量結果顯示,石版的表面溫

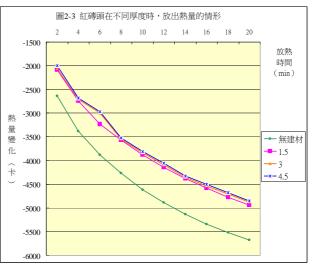
度 24.1℃,大理石為 24.3℃、瓷磚是 24.4℃,紅磚頭表面溫度 24.6℃。本實驗結果,跟我們

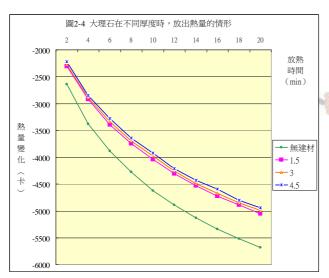
在課本學到的知識相符,所以,表面溫度最低的 石版,散熱速率最快,表面溫度最高的紅磚頭則 是散熱速率最慢的。

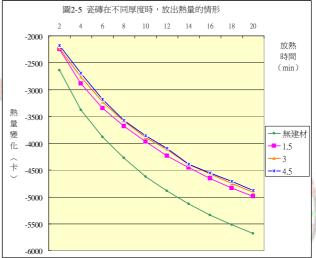

我相信祖先一定是發現到石版具有散熱快速的特性,難怪炎熱的夏天中,摸著石版屋裡的牆壁會有涼爽的感覺。老師也說自己去年十一月到部落參觀時,到了村口石版屋,明明是炎熱的中午,結果石版屋裡卻非常涼爽,簡直像開了冷氣一樣,腳踩在石版製做的地板上,也是很涼爽。

老師指導我們進行建材表面溫度的測量

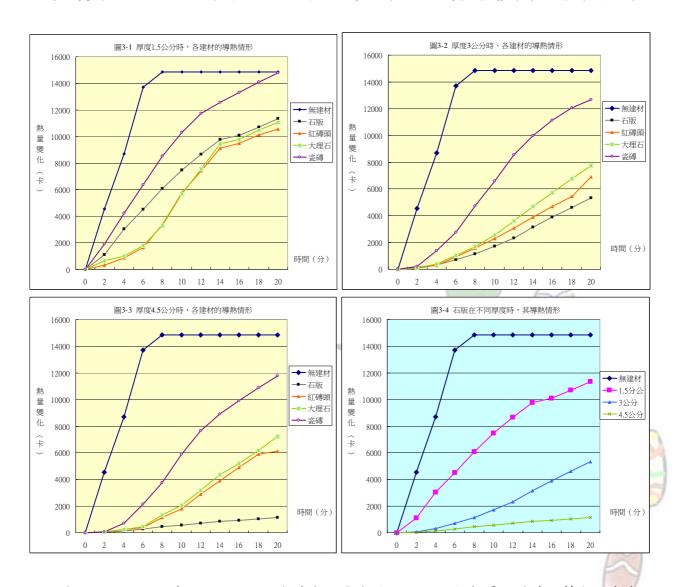

(二)不同建材在不同厚度時,散熱效果的變化


當我們改變建材厚度來做實驗,得到數據後,我們將數據整理如下表六。




建材種類	石版			紅磚頭			大理石			瓷磚			無
建材厚度(cm)	1.5	3.0	4.5	1.5	3.0	4.5	1.5	3.0	4.5	1.5	3.0	4.5	建材
熱量放出速率 (cal/min)	272	255.5	253.5	247	244	242.5	252.5	249.5	247	249.5	245.5	244	284

我們將厚度為 1.5 公分和 3 公分的相同建材,做散熱速率的比較。結果發現,石版減少了 6%、紅磚頭和大理石都減少 1.2%,而瓷磚減少 1.6%。可見,建材厚度的改變,對於石版散熱的效果影響很大,但對紅磚頭、大理石和瓷磚的影響很少。這點由圖 2-2、2-3、2-4和 2-5 可看出。



三、石版、紅磚頭、大理石、瓷磚的導熱能力的差異

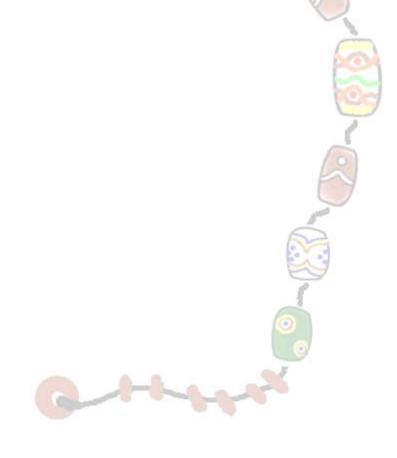
我們把石版、紅磚頭、大理石和瓷磚的導熱實驗數據,整理成表三,放置於研究報告的頁末。我們依實驗數據繪製成圖 3-1、3-2 和 3-3,而這三張由圖可看出,各建材厚度在 1.5 cm 時,導熱能力由大到小為:瓷磚>石版>大理石>紅磚頭;但是,厚度超過 3.0 cm,導熱能力為:瓷磚>大理石>紅磚頭>石版。所以,厚度對石版的導熱影響非常顯著(圖 3-4)。

我們將石版、紅磚頭、大理石和瓷磚在二十分鐘內吸收瓦斯熱量的速率,製成下表表七。

表七 各種建材二十分鐘內吸收瓦斯熱量速率

建材種類		石版		紅磚頭			,	大理石	i	瓷磚			
建材厚度(cm)	1.5	3.0	4.5	1.5	3.0	4.5	1.5	3.0	4.5	1.5	3.0	4.5	
吸收熱量速率 (cal/min)	568	266	58	528	345	306	553	386	361	740	633	589	

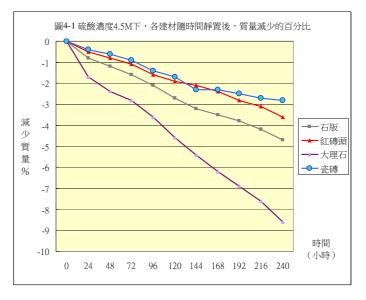
深入探討原因,我們認為石版為自然物質,沒有經過加工處理,還有石版內部為片狀排列,因此當我們加熱石版時,都會聽到輕微的空氣爆鳴聲,而其他建材都沒有這種情形。所以,當石版的厚度愈大,相對的,縫隙中的空氣也愈多,熱傳導受到的阻礙也愈多。


石版烤肉是我們家鄉傳統美食,我們有慶典或是活動,都會習慣吃石版烤肉,遊客到我們家鄉來遊玩也會買來嚐鮮。不過,利用石版來烤肉,總是比用其他器具要花費較久的時間才能把肉烤熟。以前,我們偶爾會懷疑自己的祖先為什麼要選用石版來烹飪食物?要煮好久才能煮熟食物。可是,經過這次實驗後,我們知道石版具有導熱慢的特性,所以,用石版烤

肉可以慢慢的把肉的油脂逼出來,食物 受熱比較平均,又不容易把肉燒焦,我 們認為這就是祖先選用使用石版來烹煮 食物的理由。

在我們研究的過程中,我們也觀察 了部落石版烤肉店裡用的石版,其厚度 都超過3公分,烤肉的速度雖然會慢, 但是醬汁也會更入味,食物也更好吃。

村裡石版烤肉店所用的都是大片又厚的石版 這是88風災前,多納村假日的遊客很多,他們都會點盤石 版烤肉來嚐鮮



四、石版、紅磚頭、大理石、瓷磚,對於抗腐蝕的差異

酸雨會對環境與建材造成危害,酸雨 的侵蝕不是短時間就可以觀察到的,於 是,我們選用濃硫酸來實驗,並且實驗數 據整理成表四,置於研究成果頁末。

我們研究發現,不論硫酸濃度小或 大,不同建材對硫酸的抗腐蝕性由強到弱 依序為:瓷磚>紅磚頭>石版>大理石。 以右圖為例,可以看出四種建材的差異。

由於瓷磚是加工產品,經由高溫燒製 與表面處理後,使建材的空隙小,減少了 硫酸反應面積,因此,瓷磚的抗腐性較佳。 紅磚頭也是高溫加工,但缺少表面處理,

所以略差。大理石主要成份為碳酸鈣,容易與硫酸反應,是四種建材中,抗腐蝕性最差。

石版的抗腐蝕性雖然比瓷磚與紅磚頭差,但是石版是天然建材;另外,我們研究也發現當硫酸濃度為 4.5M 的實驗時,各建材的差異很小,石版和其他建材的差異並不顯著。我們將數據整理為表八。

表八 將不同建材浸泡在不同濃度硫酸溶液中十天,其質量減少的百分比

								9					
建材種類	石版			紅磚頭			大理石			瓷磚			
硫酸濃度(M)	4.5	9.0	18	4.5	9.0	18	4.5	9.0	18	4.5	9.0	18	
質量減少(%)	4.7	9.6	15.4	3.6	5.1	7.6	8.6	22.6	38.5	2.8	2.9	3.5	

酸雨的濃度與遠比 4.5M 小,且我們的研究顯示石版在低濃度硫酸溶液中的抗腐蝕能力 與其他建材差異小,所以,我們可以說魯凱族祖先會選用石版來記錄生活、雕刻藝術與文化, 以及興建居屋等,實在是聰明的選擇。

實驗情形

測量質量(我們只是把電子天平放在體重計上,學校 實驗室還沒有啟用)

五、瞭解魯凱族對於石版的傳統智慧

我們魯凱族生活在山林之中,不缺乏土石或木材,也有一些鐵器,但是,我們魯凱族人 卻選用石版做主要建築材料,我們相信,這是他們在長久生活中,觀察到石版建材的優點。 經由這次的研究,我們以科學數值了解石版在吸熱、散熱、導熱,和抗腐蝕的特性,難怪石 版屋居住起來能夠冬暖夏涼、用來炊煮食物不易燒焦,還能保存我們族群的雕刻藝術文化。

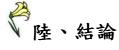
在訪問書老與文化人士方面,我們很感謝⁴<u>陳誠</u>老師教導我們石版與魯凱文化的關聯,在陳老師的指導下,我們知道魯凱族蓋石版屋還有禦敵和防災(火)的功能,而且族人早已注意到,不同出處的石版是有不同硬度的,山邊的石版聲音較清脆,較容易風化,而一直浸泡在水裡的石版則是最堅硬的。

學校提供我們⁵<u>羅善</u>先生到學校演的內容,讓我們知道族人在選用石版時,早已注意到風 化問題,於是,族人會用較堅硬且大片的石版成為石版屋屋頂,其他牆面用的石版是一層層 堆疊上去,再用泥塊填滿隙縫。

雖然,我們沒有訪問到⁶馬樂先生,可是經由他所規劃的萬山石版屋解說內容,我們知道石版屋的相關知識,而且老師還帶回 2010 國定遺址「萬山岩雕群研究活動手冊」供我們參考,手冊裡馬樂先生以石版文化為基礎,追求創新與多用途的使用石版,以便讓更多人知道魯凱石版的特殊性。

最後,多納村口的阿姨借我們石版屋,讓我們把最高最低溫度計放置在那裡,了解室溫 在石版屋和普通房屋是有差異的。

萬山村裡有大型或小型的石版屋模型 這裡規劃了石版屋的解說區



感謝陳誠老師教授我們魯凱族的石版文化

⁴我們部落小學退休教師,長年居住家鄉的原住民,現在經營具有傳統特色的民宿,並從事魯凱文化的推廣工作, 關懷茂林文化發展(文化發展協會)與生態環境的變遷(紫蝶保育推廣)。

⁵ 多納村頭目家族的成員

⁶ 以製做石版屋模型而聞名

一、吸熱

- (一)在吸收太陽輻射熱方面,紅磚頭最會吸熱,然後依序是石版、大理石、瓷磚。
- (二)建材的厚度愈厚,吸熱的速率就愈慢。我們祖先有智慧的選用石版,難怪我們會 覺得冬天在石版屋裡,比較溫暖。

二、散熱

- (一) 散熱的速率方面,石版最快,其他依序為大理石、瓷磚、紅磚頭。
- (二)建材的厚度愈厚,散熱就會愈慢,其中,厚度對石版散熱效果影響很大。
- (三)石版屋具有夏天涼爽的特性,這與石版具有散熱快的特性有關。

三、導熱

- (一)建材厚度為 1.5 公分時, 瓷磚的導熱效果最好, 其他依序為石版、大理石, 而紅磚頭最差。
- (二)厚度超3公分後,反而石版最不會導熱,其他建材則沒有太顯著的影響。
- (三)我們祖先應該就是發現了石版具有導熱慢的特性,才會用它來烹煮食材,不會燒 焦食物,又能將食物中多餘的油脂慢慢逼出來。

四、抗腐蝕

- (一)各建材抗腐蝕的能力,最好的是瓷磚,然後是紅磚頭、石版,最差的是大理石。
- (二)硫酸濃度小的實驗中,各建材的差異很小。
- (三)酸雨濃度小於 4.5M,所以,祖先選用石版做為居家材料、藝術雕刻材料等,其抗腐蝕能力與其他建材差異小。

表一 不同建材吸,在不同厚度時,吸收太陽輻射熱的情形

	照時間變化(卡)	0 小時	1小時	2小時	3小時	4 小時	5小時	6小時	7小時	8小時	9小時	10 小時
無	無建材		500	910	1100	1220	1300	1320	1230	1100	860	660
	1.5cm	0	980	1110	1380	1550	1740	1910	1780	1490	980	880
石版	3.0cm	0	840	1080	1360	1540	1730	1850	1610	1250	1000	830
	4.5cm	0	750	1040	1170	1350	1410	1550	1530	1300	1080	790
	1.5cm	0	990	1330	1570	1800	1860	2050	1880	1650	1100	940
紅磚頭	3.0cm	0	980	1210	1550	1710	1830	1850	1730	1330	990	830
	4.5cm	0	900	1120	1410	1620	1740	1720	1740	1300	950	800
	1.5cm	0	740	1100	1330	1510	1690	1900	1730	1480	1010	900
大理石	3.0cm	0	700	990	1300	1340	1520	1680	1710	1560	1210	940
	4.5cm	0	660	950	1290	1330	1450	1660	1680	1490	1240	970
	1.5cm	0	690	1080	1290	1490	1510	1570	1490	1220	950	770
瓷磚	3.0cm	0	760	1020	1260	1440	1500	1550	1510	1290	1010	800
	4.5cm	0	690	710	1100	1220	1310	1430	1480	1200	910	660

表二 不同建材,在不同厚度時,放出熱量的差異

	散熱時間化(卡)	0min	2min	4 min	6min	8 min	10 min	12 min	14 min	16 min	18 min	20 min
無	無建材		-2640	-3380	-3880	-4270	-4620	-4890	-5130	-5340	-5520	-5680
	1.5cm	0	-2580	-3270	-3720	-4090	-4400	-4670	-4900	-5100	-5280	-5440
石版	3.0cm	0	-2560	-3180	-3560	-3870	-4150	-4400	-4600	-4790	-4960	-5110
	4.5cm	0	-2560	-3110	-3500	-3790	-4080	-4340	-4550	-4760	-4940	-5070
	1.5cm	0	-2090	-2740	-3230	-3570	-3880	-4140	-4380	-4580	-4770	-4940
紅磚頭	3.0cm	0	-2060	-2710	-3000	-3550	-3840	-4090	-4350	-4540	-4700	-4880
	4.5cm	0	-2000	-2680	-2970	-3520	-3810	-4060	-4330	-4500	-4680	-4850
	1.5cm	0	-2300	-2920	-3390	-3740	-4040	-4300	-4530	-4720	-4890	-5050
大理石	3.0cm	0	-2270	-2890	-3340	-3700	-3980	-4260	-4490	-4670	-4850	-4990
	4.5cm	0	-2220	-2850	-3280	-3640	-3920	-4210	-4430	-4590	-4800	-4940
	1.5cm	0	-2250	-2890	-3350	-3680	-3970	-4230	-4450	-4650	-4830	-4990
瓷磚	3.0cm	0	-2230	-2760	-3230	-3590	-3890	-4120	-4400	-4570	-4750	-4910
	4.5cm	0	-2180	-2690	-3180	-3570	-3860	-4090	-4390	-4550	-4710	-4880

表三 不同建材,在不同厚度時,吸收瓦斯熱的差異

	熱時間	0min	2min	4 min	6min	8 min	10 min	12 min	14 min	16 min	18 min	20 min
無	無建材		4560	8700	13700	14840	14840	14840	14840	14840	14840	14840
	1.5cm	0	1120	3040	4520	6080	7480	8660	9760	10080	10700	11360
石版	3.0cm	0	60	320	720	1160	1720	2340	3140	3900	4620	5320
	4.5cm	0	40	140	280	460	580	700	860	920	1040	1160
	1.5cm	0	320	860	1660	3360	5780	7420	9120	9480	10140	10560
紅磚頭	3.0cm	0	180	280	940	1580	2300	3080	3900	4680	5440	6900
	4.5cm	0	60	240	400	1160	1800	2900	3900	4900	5920	6120
	1.5cm	0	660	1020	1780	3280	5680	7540	9460	9760	10500	11060
大理石	3.0cm	0	120	400	1040	1680	2540	3620	4680	5720	6780	7720
	4.5cm	0	80	260	460	1320	2060	3200	4360	5200	6200	7220
	1.5cm	0	1880	4220	6360	8520	10320	11740	12560	13320	14100	14800
瓷磚	3.0cm	0	220	1400	2740	4740	6580	8560	9980	11140	12060	12660
	4.5cm	0	80	700	2160	3760	5900	7660	8900	9920	10880	11780

表四 不同建材,在不同厚度時,吸收瓦斯熱的差異

質量	浸泡時間減少(%)	0	24hr	48hr	72hr	96hr	120hr	144hr	168hr	192hr	216hr	240hr
	4.5M	0%	-0.8%	-1.2%	-1.6%	-2.1%	-2.7%	-3.2%	-3.5%	-3.8%	-4.2%	-4.7%
石版	9M	0%	-1.1%	-2.3%	-2.9%	-3.6%	-4.6%	-5.3%	-6.5%	-7.4%	-8.5%	-9.6%
	18M	Ο%	-2.3%	-3.1%	-4.4%	-5.6%	-6.8%	-7.9%	-8.6%	-10.9%	-12.3%	-15.4%
	4.5M	0%	-0.5%	-0.8%	-1.1%	-1.6%	-1.9%	-2.1%	-2.4%	-2.8%	-3.1%	-3.6%
紅磚頭	9M	0%	-0.8%	-1.2%	-1.4%	-2.1%	-2.3%	-2.6%	-3.1%	-3.8%	-4.6%	-5.1%
	18M	0%	-0.8%	-1.9%	-2.3%	-2.8%	-3.6%	-4.3%	-5.1%	-5.9%	-6.7%	-7.6%
	4.5M	0%	-1.7%	-2.4%	-2.8%	-3.6%	-4.6%	-5.4%	-6.2%	-6.9%	-7.6%	-8.6%
大理石	9M	0%	-6.2%	-7.8%	-8.9%	-10.4%	-12.3%	-14.5%	-16.2%	-17.3%	-19.2%	-22.6%
	18M	0%	-12.3%	-16.9%	-19.3%	-23.2%	-26.3%	-27.6%	-30.2%	-33.5%	-36.4%	-38.5%
	4.5M	0%	-0.4%	-0.6%	-0.9%	-1.4%	-1.7%	-2.3%	-2.3%	-2.5%	-2.7%	-2.8%
瓷磚	9M	0%	-0.5%	-0.7%	-1.0%	-1.5%	-1.9%	-2.2%	-2.5%	-2.6%	-2.8%	-2.9%
	18M	0%	-0.5%	-0.9%	-1.2%	-1.5%	-1.8%	-2.1%	-2.4%	-2.8%	-3.2%	-3.5%

